ПОНЯТИЕ О ВЫБОРКЕ И ВЫБОРОЧНОМ «МЕТОДЕ В СТАТИСТИКЕ»
Article Index
ПОНЯТИЕ О ВЫБОРКЕ И ВЫБОРОЧНОМ «МЕТОДЕ В СТАТИСТИКЕ»
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
All Pages

Статистические совокупности – это не только реально существующие множества, но и очень большие множества (примеры: 47 млн. жителей Украины).

Из этого следует, что если при изучении статистических совокупностей пользоваться сплошным наблюдением, то нужны огромные затраты времени.

Затраты большие, материальные. Поэтому прибегают к несплошному наблюдению или выборке.

Часть при обследовании (наблюдении) в единице совокупности приходится уничтожать единицы. Нужно прибегать к выборке.

Очень часто единицы недоступны по каким-то причинам для непос-нной регистрации, поэтому прибегают к выборочному анкетированию (выборка). В свете всего вышеизложенного практически любое наблюдение – выборочное.

Таким образом выборочное наблюдение (выборка) имеет массу преимуществ:

- экономит время, материальные расходы;

- сохраняет продукцию, позволяет изучать слишком большие и удаленные совокупности.

- Однако, там, где есть хорошо, там всегда присутствует плохо! Так и в выборке есть недостатки – ошибка – самый главный недостаток (она определяется законом соотношения части целого).

Эту ошибку очень сложно (невозможно) рассчитать.

Существует большое разнообразие выборочного наблюдения (выборки). Любое наблюдение, при котором из всей совокупности случайно отбирается какая-то часть единиц, обследуется, и полученный результат распространяется на всю совокупность.

 

Все показатели, рассчитанные для отобранной части называются выборочными, а для всей совокупности генеральными. Расхождение между ними ошибка.

 

Существует большое разнообразие выборки. При чем как по способу отбора, так и по другим показателям:

- по способу отбора единиц для обследования:

1) собственно случайная выборка (см. выше);

2) если перед отбором единиц для наблюдения совокупность механически разбивается на части, а затем производится отбор. Она называется механической;

3) когда перед отбором единиц совокупность разбивается на типы, а затем производится случайный отбор (типическая выборка).

Иногда единицы совокупности уже сами разбиты на серии - серийная выборка.

Очень важно различать выборку по объему отобранных единиц, ибо от того сколько единиц взято для обследования зависит предельная ошибка выборки (D) – чем больше, тем меньше ошибка.

В связи с этим выделяют малую выборку (до 1%).

Предел в выборке определяет экономию. Большая выборка: 1,5, 2,3,5%. Пределом является до 10%.

n бывает: 0,5; 1,5% - пишут однопроцентная выборка.

Если после обследования (наблюдения) единица возвращается в совокупность генеральную, а затем снова производится отбор, то выборка называется повторной, а если нет, то бесповторной.

Преимуществ у выборки очень много, но недостатков еще больше. Всегда есть ошибка и ее практически нельзя рассчитать. Правда в безвыходной ситуации этот метод незаменим.

Ошибка выборки рассчитывается как вероятностная на основе теории вероятности с использованием определенного задаваемого изначально исследователем доверительного интервала (t). Причем предельная ошибка выборки (t) в абсолютном значении неисчислима, ее рассчитывают через среднюю ошибку (m). В этой ситуации математики доказали, что предельная ошибка выборки будет равна: .

Наступление той или иной ошибки выборки (р) при этом или ином доверительном интервале рассчитана по интегралу Лапласа на основе теоремы Чебышева и Лапунова. Эта теорема гласит, что при максимально взятом количестве наблюдений рассчитываемая средняя (выборочная средняя) будет сколь угодно мало отличаться от генеральной средней и не превзойдет заданного предела более чем на 1m, 2m и т.д. Пределом ошибки выборки является 1 (больше 1 никогда не будет).